Nmap network security scanner man page



NMAP(1)                                                                NMAP(1)




NAME

       nmap - Network exploration tool and security scanner


SYNOPSIS

       nmap [Scan Type(s)] [Options] <host or net #1 ... [#N]>


DESCRIPTION

       Nmap is designed to allow system administrators and curious individuals
       to scan large networks to determine which hosts are up  and  what  ser-
       vices  they  are  offering.   nmap  supports a large number of scanning
       techniques such as: UDP, TCP connect(), TCP SYN (half open), ftp  proxy
       (bounce attack), Reverse-ident, ICMP (ping sweep), FIN, ACK sweep, Xmas
       Tree, SYN sweep, IP Protocol, and Null scan.  See the Scan  Types  sec-
       tion  for more details.  nmap also offers a number of advanced features
       such as remote OS detection via TCP/IP  fingerprinting,  stealth  scan-
       ning, dynamic delay and retransmission calculations, parallel scanning,
       detection of down hosts via parallel pings, decoy scanning,  port  fil-
       tering  detection,  direct (non-portmapper) RPC scanning, fragmentation
       scanning, and flexible target and port specification.

       Significant effort has been put into decent nmap performance  for  non-
       root  users.   Unfortunately,  many critical kernel interfaces (such as
       raw sockets) require root privileges.  nmap should be run as root when-
       ever possible (not setuid root, of course).

       The  result  of  running nmap is usually a list of interesting ports on
       the machine(s) being scanned (if any).  Nmap always  gives  the  port’s
       "well  known"  service name (if any), number, state, and protocol.  The
       state is either "open", "filtered", or "unfiltered".  Open  means  that
       the  target  machine  will accept() connections on that port.  Filtered
       means that a firewall, filter, or other network  obstacle  is  covering
       the port and preventing nmap from determining whether the port is open.
       Unfiltered means that the port is known by nmap to  be  closed  and  no
       firewall/filter  seems to be interfering with nmap’s attempts to deter-
       mine this.  Unfiltered ports are the common case  and  are  only  shown
       when most of the scanned ports are in the filtered state.

       Depending  on  options used, nmap may also report the following charac-
       teristics of the remote host: OS in use, TCP  sequentiality,  usernames
       running  the  programs  which  have  bound  to each port, the DNS name,
       whether the host is a smurf address, and a few others.


OPTIONS

       Options that make sense  together  can  generally  be  combined.   Some
       options  are  specific  to certain scan modes.  nmap tries to catch and
       warn the user about psychotic or unsupported option combinations.

       If you are impatient, you can skip to the examples section at the  end,
       which  demonstrates common usage.  You can also run nmap -h for a quick
       reference page listing all the options.

       SCAN TYPES

       -sS    TCP SYN scan: This technique is often referred to as "half-open"
              scanning, because you don’t open a full TCP connection. You send
              a SYN packet, as if you are going to open a real connection  and
              you wait for a response. A SYN|ACK indicates the port is listen-
              ing. A RST is indicative of a non-listener.   If  a  SYN|ACK  is
              received,  a RST is immediately sent to tear down the connection
              (actually our OS kernel does this for us). The primary advantage
              to  this  scanning  technique  is  that fewer sites will log it.
              Unfortunately you need root privileges to build these custom SYN
              packets.  This is the default scan type for privileged users.

       -sT    TCP connect() scan: This is the most basic form of TCP scanning.
              The connect() system call provided by your operating  system  is
              used  to  open  a  connection  to  every interesting port on the
              machine. If the port is listening, connect() will succeed,  oth-
              erwise  the  port  isn’t reachable. One strong advantage to this
              technique is that you don’t need  any  special  privileges.  Any
              user on most UNIX boxes is free to use this call.

              This  sort of scan is easily detectable as target host logs will
              show a bunch of connection and error messages for  the  services
              which  accept() the connection just to have it immediately shut-
              down.  This is the default scan type for unprivileged users.

       -sF -sX -sN
              Stealth FIN, Xmas Tree, or Null scan modes: There are times when
              even  SYN  scanning isn’t clandestine enough. Some firewalls and
              packet filters watch for SYNs to restricted ports, and  programs
              like Synlogger and Courtney are available to detect these scans.
              These advanced scans, on the other hand, may  be  able  to  pass
              through unmolested.

              The  idea  is  that  closed  ports are required to reply to your
              probe packet with an RST, while open ports must ignore the pack-
              ets  in  question (see RFC 793 pp 64).  The FIN scan uses a bare
              (surprise) FIN packet as the probe, while  the  Xmas  tree  scan
              turns  on the FIN, URG, and PUSH flags.  The Null scan turns off
              all flags.  Unfortunately Microsoft (like usual) decided to com-
              pletely  ignore  the standard and do things their own way.  Thus
              this scan type  will  not  work  against  systems  running  Win-
              dows95/NT.   On the positive side, this is a good way to distin-
              guish between the two platforms.  If the scan finds open  ports,
              you  know the machine is not a Windows box.  If a -sF,-sX,or -sN
              scan shows all ports closed, yet a SYN (-sS)  scan  shows  ports
              being  opened,  you are probably looking at a Windows box.  This
              is less useful now that nmap has proper OS detection  built  in.
              There  are  also a few other systems that are broken in the same
              way Windows is.  They include Cisco, BSDI, HP/UX, MVS, and IRIX.
              All  of  the  above  send  resets  from the open ports when they
              should just drop the packet.

       -sP    Ping scanning: Sometimes you only want to know which hosts on  a
              network  are  up.  Nmap can do this by sending ICMP echo request
              packets to every IP address on the networks you specify.   Hosts
              that   respond  are  up.   Unfortunately,  some  sites  such  as
              microsoft.com block echo request packets.  Thus  nmap  can  also
              send a TCP ack packet to (by default) port 80.  If we get an RST
              back, that machine is up.  A third technique involves sending  a
              SYN  packet  and  waiting  for a RST or a SYN/ACK.  For non-root
              users, a connect() method is used.

              By default (for root users), nmap uses both  the  ICMP  and  ACK
              techniques  in parallel.  You can change the -P option described
              later.

              Note that pinging is done by default anyway, and only hosts that
              respond  are  scanned.  Only use this option if you wish to ping
              sweep without doing any actual port scans.

       -sV    Version detection: Afer TCP  and/or  UDP  ports  are  discovered
              using  one of the other scan methods, version detection communi-
              cates with those ports to try and determine more about  what  is
              actually  running.  A file called nmap-service-probes is used to
              determine the best probes for detecting various services and the
              match  strings  to  expect.  Nmap tries to determine the service
              protocol (e.g. ftp, ssh, telnet,  http),  the  application  name
              (e.g. ISC Bind, Apache httpd, Solaris telnetd), the version num-
              ber, and sometimes  miscellaneous  details  like  whether  an  X
              server  is open to connections or the SSH protocol version).  If
              Nmap was compiled with OpenSSL support, it will connect  to  SSL
              servers  to  deduce the service listening behind the encryption.
              When RPC services are discovered, the Nmap RPC grinder  is  used
              to determine the RPC program and version numbers.  Note that the
              Nmap -A option also enables  this  feature.   For  a  much  more
              detailed  description  of Nmap service detection, read our paper
              at http://www.insecure.org/nmap/versionscan.html .  There  is  a
              related  --version_trace  option  which causes Nmap to print out
              extensive debugging info about what version  scanning  is  doing
              (this is a subset of what you would get with --packet_trace).

       -sU    UDP  scans:  This  method  is  used to determine which UDP (User
              Datagram Protocol, RFC 768) ports are open on a host.  The tech-
              nique  is  to send 0 byte UDP packets to each port on the target
              machine.  If we receive an ICMP port unreachable  message,  then
              the  port  is closed.  Otherwise we assume it is open.  Unfortu-
              nately, firewalls often block  the  port  unreachable  messages,
              causing  the  port  to appear open.  Sometimes an ISP will block
              only a few specific dangerous ports such as 31337 (back orifice)
              and  139 (Windows NetBIOS), making it look like these vulnerable
              ports are open.  So don’t panic immediately.  Unfortunately,  it
              isn’t  always  trivial  to  differentiate  between real open UDP
              ports and these filtered false-positives.

              Some people think UDP scanning is pointless.  I  usually  remind
              them of the Solaris rpcbind hole. Rpcbind can be found hiding on
              an undocumented UDP port somewhere above 32770.  So  it  doesn’t
              matter  that  111  is  blocked by the firewall. But can you find
              which of the more than 30,000 high ports  it  is  listening  on?
              With  a UDP scanner you can!  There is also the cDc Back Orifice
              backdoor program which hides on a configurable UDP port on  Win-
              dows machines.  Not to mention the many commonly vulnerable ser-
              vices that utilize UDP such as snmp, tftp, NFS, etc.

              Unfortunately UDP scanning is  sometimes  painfully  slow  since
              most  hosts implement a suggestion in RFC 1812 (section 4.3.2.8)
              of limiting the ICMP error message rate.  For example, the Linux
              kernel  (in net/ipv4/icmp.h) limits destination unreachable mes-
              sage generation to 80 per 4 seconds, with a 1/4  second  penalty
              if that is exceeded.  Solaris has much more strict limits (about
              2 messages per second) and thus takes even longer to scan.  nmap
              detects  this  rate  limiting and slows down accordingly, rather
              than flood the network with useless packets that will be ignored
              by the target machine.

              As  is  typical, Microsoft ignored the suggestion of the RFC and
              does not seem to do any rate limiting at all  on  Win95  and  NT
              machines.   Thus  we can scan all 65K ports of a Windows machine
              very quickly.  Whoop!


       -sO    IP protocol scans: This method is used  to  determine  which  IP
              protocols are supported on a host.  The technique is to send raw
              IP packets without any further protocol header to each specified
              protocol  on the target machine.  If we receive an ICMP protocol
              unreachable message, then the protocol is not in use.  Otherwise
              we assume it is open.  Note that some hosts (AIX, HP-UX, Digital
              UNIX) and firewalls may not send protocol unreachable  messages.
              This causes all of the protocols to appear "open".

              Because  the  implemented  technique is very similar to UDP port
              scanning, ICMP rate limit might apply too. But the  IP  protocol
              field  has  only  8 bits, so at most 256 protocols can be probed
              which should be possible in reasonable time anyway.

       -sI <zombie host[:probeport]>
              Idlescan: This advanced scan method allows for a truly blind TCP
              port scan of the target (meaning no packets are sent to the tar-
              get from your real IP address).  Instead, a unique  side-channel
              attack  exploits predictable "IP fragmentation ID" sequence gen-
              eration on the zombie host to glean information about  the  open
              ports  on the target.  IDS systems will display the scan as com-
              ing from the zombie machine you specify (which must  be  up  and
              meet  certain  criteria).   I wrote an informal paper about this
              technique at http://www.insecure.org/nmap/idlescan.html .

              Besides  being  extraordinarily  stealthy  (due  to  its   blind
              nature), this scan type permits mapping out IP-based trust rela-
              tionships between machines.  The port listing shows  open  ports
              from  the  perspective of the zombie host.  So you can try scan-
              ning a target using various zombies  that  you  think  might  be
              trusted  (via  router/packet  filter  rules).  Obviously this is
              crucial information when prioritizing  attack  targets.   Other-
              wise,  you penetration testers might have to expend considerable
              resources "owning" an intermediate system, only to find out that
              its  IP  isn’t  even  trusted by the target host/network you are
              ultimately after.

              You can add a colon followed by a port number  if  you  wish  to
              probe  a  particular  port  on the zombie host for IPID changes.
              Otherwise Nmap will use the port it uses  by  default  for  "tcp
              pings".

       -sA    ACK  scan: This advanced method is usually used to map out fire-
              wall rulesets.  In particular, it can help determine  whether  a
              firewall  is stateful or just a simple packet filter that blocks
              incoming SYN packets.

              This scan type sends an ACK packet (with random looking acknowl-
              edgment/sequence  numbers)  to  the  ports  specified.  If a RST
              comes back, the ports is classified as "unfiltered".  If nothing
              comes  back (or if an ICMP unreachable is returned), the port is
              classified as "filtered".  Note that nmap usually doesn’t  print
              "unfiltered"  ports,  so getting no ports shown in the output is
              usually a sign that all the probes  got  through  (and  returned
              RSTs).  This  scan will obviously never show ports in the "open"
              state.

       -sW    Window scan: This advanced scan is very similar to the ACK scan,
              except  that  it can sometimes detect open ports as well as fil-
              tered/unfiltered due to  an  anomaly  in  the  TCP  window  size
              reporting by some operating systems.  Systems vulnerable to this
              include at least some versions of AIX, Amiga, BeOS, BSDI,  Cray,
              Tru64  UNIX, DG/UX, OpenVMS, Digital UNIX, FreeBSD, HP-UX, OS/2,
              IRIX, MacOS, NetBSD, OpenBSD,  OpenStep,  QNX,  Rhapsody,  SunOS
              4.X,  Ultrix,  VAX,  and  VxWorks.  See the nmap-hackers mailing
              list archive for a full list.

       -sR    RPC scan.  This method works in  combination  with  the  various
              port scan methods of Nmap.  It takes all the TCP/UDP ports found
              open and then floods them with SunRPC program NULL  commands  in
              an  attempt  to determine whether they are RPC ports, and if so,
              what program and version number they serve  up.   Thus  you  can
              effectively  obtain  the  same  info as "rpcinfo -p" even if the
              target’s portmapper is behind a firewall (or  protected  by  TCP
              wrappers).   Decoys do not currently work with RPC scan, at some
              point I may add decoy support for UDP RPC scans.

       -sL    List scan.  This method simply generates and prints a list of IP
              addresses or hostnames without actually pinging or port scanning
              them.  DNS name resolution will be performed unless you use  -n.

       -b <ftp relay host>
              FTP  bounce attack: An interesting "feature" of the ftp protocol
              (RFC 959) is support  for  "proxy"  ftp  connections.  In  other
              words,  I  should  be  able  to connect from evil.com to the FTP
              server of target.com and request that the  server  send  a  file
              ANYWHERE on the Internet!  Now this may have worked well in 1985
              when the RFC was written. But in today’s Internet, we can’t have
              people  hijacking  ftp  servers and requesting that data be spit
              out to arbitrary points on the Internet. As *Hobbit* wrote  back
              in  1995,  this  protocol  flaw  "can  be used to post virtually
              untraceable mail and news, hammer on servers at  various  sites,
              fill  up  disks, try to hop firewalls, and generally be annoying
              and hard to track down at the same time." What we  will  exploit
              this  for  is  to  (surprise,  surprise)  scan  TCP ports from a
              "proxy" ftp server. Thus you could  connect  to  an  ftp  server
              behind  a  firewall, and then scan ports that are more likely to
              be blocked (139 is a good one). If the ftp server allows reading
              from  and writing to some directory (such as /incoming), you can
              send arbitrary data to ports that you do find open (nmap doesn’t
              do this for you though).

              The  argument  passed  to the "b" option is the host you want to
              use as a proxy, in standard URL notation.  The format is:  user-
              name:password@server:port.   Everything  but server is optional.
              To determine what servers are vulnerable to this attack, you can
              see my article in Phrack 51.  An updated version is available at
              the nmap URL (http://www.insecure.org/nmap).

       GENERAL OPTIONS
              None of these are required but some can be quite  useful.   Note
              that the -P options can now be combined -- you can increase your
              odds of penetrating strict firewalls by sending many probe types
              using different TCP ports/flags and ICMP codes.

       -P0    Do  not  try  to  ping  hosts at all before scanning them.  This
              allows the scanning of  networks  that  don’t  allow  ICMP  echo
              requests  (or  responses) through their firewall.  microsoft.com
              is an example of such a network, and thus you should always  use
              -P0  or  -PT80 when portscanning microsoft.com.  Note tht "ping"
              in this contect may involve more than the traditional ICMP  echo
              request packet.  Nmap supports many such probes, including arbi-
              trary combinations of TCP, UDP, and ICMP  probes.   By  default,
              Nmap sends an ICMP echo request and a TCP ACK packet to port 80.

       -PT [portlist]
              Use TCP "ping" to determine what hosts are up.  Instead of send-
              ing  ICMP  echo  request  packets and waiting for a response, we
              spew out TCP ACK packets throughout the target network (or to  a
              single  machine)  and  then  wait for responses to trickle back.
              Hosts that are up should respond with a RST.  This  option  pre-
              serves  the  efficiency of only scanning hosts that are up while
              still allowing you to scan networks/hosts that block ping  pack-
              ets.  For non root users, we use connect().  To set the destina-
              tion ports of the  probe  packets  use  -PT<port1>[,port2][...].
              The  default  port  is 80, since this port is often not filtered
              out.  Note that this option now  accepts  multiple,  comma-sepa-
              rated port numbers.

       -PS [portlist]
              This option uses SYN (connection request) packets instead of ACK
              packets for root users.  Hosts that are up should respond with a
              RST  (or, rarely, a SYN|ACK).  You can set the destination ports
              in the same manner as -PT above.

       -PU [portlist]
              This option sends UDP probes to the specified  hosts,  expecting
              an  ICMP  port unreachable packet (or possibly a UDP response if
              the port is open) if the host is up.  Since  many  UDP  services
              won’t  reply  to an empty packet, your best bet might be to send
              this to expected-closed ports rather than open ones.

       -PE    This option uses a true ping (ICMP  echo  request)  packet.   It
              finds  hosts  that  are  up  and  also looks for subnet-directed
              broadcast addresses on your network.   These  are  IP  addresses
              which  are  externally reachable and translate to a broadcast of
              incoming IP packets to a subnet of computers.  These  should  be
              eliminated if found as they allow for numerous denial of service
              attacks (Smurf is the most common).

       -PP    Uses an ICMP timestamp request (type 13) packet to find  listen-
              ing hosts.

       -PM    Same  as  -PE  and  -PP except uses a netmask request (ICMP type
              17).

       -PB    This is the default ping type.  It uses both the ACK ( -PT ) and
              ICMP  echo request ( -PE ) sweeps in parallel.  This way you can
              get firewalls that filter either one (but not  both).   The  TCP
              probe destination port can be set in the same manner as with -PT
              above.  Note that this flag is now deprecated as pingtype  flags
              can now be used in combination.  So you should use both "PE" and
              "PT" to achieve this same effect.

       -O     This option activates remote host identification via TCP/IP fin-
              gerprinting.   In  other words, it uses a bunch of techniques to
              detect subtleties in the  underlying  operating  system  network
              stack  of the computers you are scanning.  It uses this informa-
              tion to create  a  "fingerprint"  which  it  compares  with  its
              database  of  known  OS  fingerprints  (the nmap-os-fingerprints
              file) to decide what type of system you are scanning.

              If Nmap is unable to guess the OS of a machine,  and  conditions
              are  good (e.g. at least one open port), Nmap will provide a URL
              you can use to submit the fingerprint if you know (for sure) the
              OS  running on the machine.  By doing this you contribute to the
              pool of operating systems known to nmap and thus it will be more
              accurate  for everyone.  Note that if you leave an IP address on
              the form, the machine may be scanned when we add the fingerprint
              (to validate that it works).

              The  -O  option  also  enables  several other tests.  One is the
              "Uptime" measurement, which uses the TCP timestamp  option  (RFC
              1323)  to  guess when a machine was last rebooted.  This is only
              reported for machines which provide this information.

              Another test enabled by -O is TCP Sequence Predictability  Clas-
              sification.   This is a measure that describes approximately how
              hard it is to establish a  forged  TCP  connection  against  the
              remote  host.   This  is  useful  for exploiting source-IP based
              trust relationships (rlogin, firewall filters, etc) or for  hid-
              ing  the  source  of an attack.  The actual difficulty number is
              based on statistical sampling and may fluctuate.  It  is  gener-
              ally  better  to  use the English classification such as "worthy
              challenge" or "trivial joke".  This is only reported  in  normal
              output with -v.

              When  verbose  mode (-v) is on with -O, IPID Sequence Generation
              is also reported.  Most machines are in the "incremental" class,
              which  means that they increment the "ID" field in the IP header
              for each packet they send.  This makes them vulnerable  to  sev-
              eral advanced information gathering and spoofing attacks.

       -A     This  option  enables  _a_dditional  _a_dvanced and _a_ggressive
              options.  I haven’t decided exactly which it stands for yet  :).
              Presently  this  enables  OS Detection (-O) and version scanning
              (-sV).  More features may be added in the future.  The point  is
              to  enable  a  comprehensive  set of scan options without people
              having to remember a large  set  of  flags.   This  option  only
              enables  features,  and not timing options (such as -T4) or ver-
              bosity options (-v) that you might wan’t as well.

       -6     This options enables IPv6 support.  All targets must be IPv6  if
              this  option  is  used, and they can be specified via normal DNS
              name  (AAAA  record)  or  as  a  literal  IP  address  such   as
              3ffe:501:4819:2000:210:f3ff:fe03:4d0 .  Currently, connect() TCP
              scan and TCP connect() Ping scan are supported.  If you need UDP
              or  other  scan  types,  have  a  look  at  http://nmap6.source-
              forge.net/ .

       -I     This turns on TCP reverse ident scanning. As noted by Dave Gold-
              smith  in  a  1996  Bugtraq  post, the ident protocol (RFC 1413)
              allows for the disclosure of the username that owns any  process
              connected via TCP, even if that process didn’t initiate the con-
              nection. So you can, for example, connect to the http  port  and
              then  use  identd  to  find out whether the server is running as
              root. This can only be done with a full TCP  connection  to  the
              target  port  (i.e.  the -sT scanning option).  When -I is used,
              the remote host’s identd is queried for each  open  port  found.
              Obviously this won’t work if the host is not running identd.

       -f     This option causes the requested SYN, FIN, XMAS, or NULL scan to
              use tiny fragmented IP packets.  The idea is to split up the TCP
              header  over  several  packets to make it harder for packet fil-
              ters, intrusion  detection  systems,  and  other  annoyances  to
              detect  what  you are doing. Be careful with this! Some programs
              have trouble handling these tiny packets.  My  favorite  sniffer
              segmentation   faulted  immediately  upon  receiving  the  first
              36-byte fragment. After that comes a 24  byte  one!  While  this
              method  won’t get by packet filters and firewalls that queue all
              IP fragments (like the  CONFIG_IP_ALWAYS_DEFRAG  option  in  the
              Linux  kernel),  some  networks can’t afford the performance hit
              this causes and thus leave it disabled.

              Note that I do not yet have this option working on all  systems.
              It  works fine for my Linux, FreeBSD, and OpenBSD boxes and some
              people have reported success with other *NIX variants.

       -v     Verbose mode.  This is a highly recommended option and it  gives
              out  more  information  about  what is going on.  You can use it
              twice for greater effect.  You can also use -d a  few  times  if
              you really want to get crazy with scrolling the screen!

       -h     This handy option display a quick reference screen of nmap usage
              options.  As you may have noticed, this man page is not  exactly
              a "quick reference" :)

       -oN <logfilename>
              This  logs  the results of your scans in a normal human readable
              form into the file you specify as an argument.

       -oX <logfilename>
              This logs the results of your scans in XML form  into  the  file
              you specify as an argument.  This allows programs to easily cap-
              ture and interpret Nmap results.  You can give the argument  "-"
              (without   quotes)  to  shoot  output  into  stdout  (for  shell
              pipelines, etc).  In this case normal output will be suppressed.
              Watch out for error messages if you use this (they will still go
              to stderr).  Also note that "-v" may cause some  extra  informa-
              tion to be printed.  The Document Type Definition (DTD) defining
              the  XML  output  structure  is  available  at  http://www.inse-
              cure.org/nmap/nmap.dtd .

       -oG <logfilename>
              This  logs the results of your scans in a grepable form into the
              file you specify as an argument.  This  simple  format  provides
              all the information on one line (so you can easily grep for port
              or OS information and see all the IPs.  This used to be the pre-
              ferred  mechanism for programs to interact with Nmap, but now we
              recommend XML output (-oX instead).  This simple format may  not
              contain  as much information as the other formats.  You can give
              the argument "-" (without quotes) to shoot  output  into  stdout
              (for  shell pipelines, etc).  In this case normal output will be
              suppressed.  Watch out for error messages if you use this  (they
              will  still  go to stderr).  Also note that "-v" will cause some
              extra information to be printed.

       -oA <basefilename>
              This tells Nmap  to  log  in  ALL  the  major  formats  (normal,
              grepable,  and  XML).  You give a base for the filename, and the
              output files will be base.nmap, base.gnmap, and base.xml.

       -oS <logfilename>
              thIs l0gz th3 r3suLtS of YouR ScanZ iN a s|<ipT kiDd|3 f0rM iNto
              THe  fiL3  U sPecfy 4s an arGuMEnT!  U kAn gIv3 the 4rgument "-"
              (wItHOUt qUOteZ) to sh00t output iNT0 stDouT!@!!

       --resume <logfilename>
              A network scan that is canceled due to control-C,  network  out-
              age,  etc.  can  be  resumed using this option.  The logfilename
              must be either a normal (-oN) or grepable  (-oG)  log  from  the
              aborted  scan.   No other options can be given (they will be the
              same as the aborted scan).  Nmap will start on the machine after
              the last one successfully scanned in the log file.

       --append_output
              Tells  Nmap  to append scan results to any output files you have
              specified rather than overwriting those files.

       -iL <inputfilename>
              Reads target specifications from the file specified RATHER  than
              from  the  command line.  The file should contain a list of host
              or network expressions separated by spaces, tabs,  or  newlines.
              Use  a hyphen (-) as inputfilename if you want nmap to read host
              expressions from stdin (like at the end of  a  pipe).   See  the
              section target specification for more information on the expres-
              sions you fill the file with.

       -iR <num hosts>
              This option tells Nmap to generate its own hosts to scan by sim-
              ply  picking  random  numbers  :).   It will never end after the
              given number of IPs has been scanned -- use 0 for a never-ending
              scan.  This option can be useful for statistical sampling of the
              Internet to estimate various things.  If  you  are  ever  really
              bored,  try  nmap -sS -PS80 -iR 0 -p 80 to find some web servers
              to look at.

       -p <port ranges>
              This option specifies what ports you want to specify. For  exam-
              ple  "-p  23"  will only try port 23 of the target host(s).  "-p
              20-30,139,60000-" scans ports between 20 and 30, port  139,  and
              all  ports greater than 60000.  The default is to scan all ports
              between 1 and 1024 as well as any ports listed in  the  services
              file  which  comes  with  nmap.  For IP protocol scanning (-sO),
              this specifies the protocol number you wish to scan for (0-255).

              When scanning both TCP and UDP ports, you can specify a particu-
              lar protocol by preceding the port numbers by "T:" or "U:".  The
              qualifier  lasts until you specify another qualifier.  For exam-
              ple, the argument  "-p  U:53,111,137,T:21-25,80,139,8080"  would
              scan  UDP ports 53,111,and 137, as well as the listed TCP ports.
              Note that to scan both UDP & TCP, you have to specify -sU and at
              least  one TCP scan type (such as -sS, -sF, or -sT).  If no pro-
              tocol qualifier is given, the port numbers are added to all pro-
              tocol lists.

       -F Fast scan mode.
              Specifies  that  you  only  wish to scan for ports listed in the
              services file which comes with nmap (or the protocols  file  for
              -sO).   This  is  obviously  much faster than scanning all 65535
              ports on a host.

       -D <decoy1 [,decoy2][,ME],...>
              Causes a decoy scan to be performed which makes it appear to the
              remote  host that the host(s) you specify as decoys are scanning
              the target network too.  Thus their IDS might report  5-10  port
              scans from unique IP addresses, but they won’t know which IP was
              scanning them and which were innocent decoys.  While this can be
              defeated  through  router  path  tracing, response-dropping, and
              other "active" mechanisms, it is generally an  extremely  effec-
              tive technique for hiding your IP address.

              Separate each decoy host with commas, and you can optionally use
              "ME" as one of the decoys to represent  the  position  you  want
              your IP address to be used.  If you put "ME" in the 6th position
              or later,  some  common  port  scan  detectors  (such  as  Solar
              Designer’s  excellent  scanlogd)  are  unlikely  to show your IP
              address at all.  If you don’t use "ME", nmap will put you  in  a
              random position.

              Note  that the hosts you use as decoys should be up or you might
              accidentally SYN flood your targets.  Also  it  will  be  pretty
              easy to determine which host is scanning if only one is actually
              up on the network.  You might want to use IP  addresses  instead
              of  names  (so  the  decoy networks don’t see you in their name-
              server logs).

              Also note that some "port  scan  detectors"  will  firewall/deny
              routing  to  hosts that attempt port scans.  The problem is that
              many scan types can be forged (as this option demonstrates).  So
              attackers  can  cause  such a machine to sever connectivity with
              important hosts such as its internet gateway, DNS  TLD  servers,
              sites  like  Windows  Update,  etc.   Most  such software offers
              whitelist capabilities, but you are unlikely to enumerate all of
              the  critical machines.  For this reason we never recommend tak-
              ing action against port scan that can be forged,  including  SYN
              scans,  UDP  scans,  etc.  The machine you block could just be a
              decoy.

              Decoys are used both in the initial ping scan (using ICMP,  SYN,
              ACK,  or  whatever)  and  during the actual port scanning phase.
              Decoys are also used during remote OS detection ( -O ).

              It is worth noting that using too many decoys may slow your scan
              and  potentially  even  make  it less accurate.  Also, some ISPs
              will filter out your spoofed packets, although  many  (currently
              most) do not restrict spoofed IP packets at all.

       -S <IP_Address>
              In  some  circumstances,  nmap may not be able to determine your
              source address ( nmap will tell you if this is  the  case).   In
              this  situation,  use  -S with your IP address (of the interface
              you wish to send packets through).

              Another possible use of this flag is to spoof the scan  to  make
              the targets think that someone else is scanning them.  Imagine a
              company being repeatedly port scanned by a competitor!  This  is
              not  a  supported  usage  (or the main purpose) of this flag.  I
              just think it raises  an  interesting  possibility  that  people
              should  be aware of before they go accusing others of port scan-
              ning them.  -e would generally be  required  for  this  sort  of
              usage.

       -e <interface>
              Tells  nmap what interface to send and receive packets on.  Nmap
              should be able to detect this but it will tell you if it cannot.

       -g <portnumber>
              Sets  the source port number used in scans.  Many naive firewall
              and packet filter installations make an exception in their rule-
              set  to  allow DNS (53) or FTP-DATA (20) packets to come through
              and establish a connection.  Obviously this completely  subverts
              the security advantages of the firewall since intruders can just
              masquerade as FTP or DNS by modifying their source port.   Obvi-
              ously  for  a  UDP  scan  you  should try 53 first and TCP scans
              should try 20 before 53.  Note that this is only  a  request  --
              nmap will honor it only if and when it is able to.  For example,
              you can’t do TCP ISN sampling all  from  one  host:port  to  one
              host:port,  so nmap changes the source port even if you used -g.

              Be aware that there is a small performance penalty on some scans
              for using this option, because I sometimes store useful informa-
              tion in the source port number.

       --data_length <number>
              Normally Nmap sends minimalistic packets  that  only  contain  a
              header.  So its TCP packets are generally 40 bytes and ICMP echo
              requests are just 28.  This option  tells  Nmap  to  append  the
              given  number  of  random bytes to most of the packets it sends.
              OS detection (-O) packets are not affected, but most pinging and
              portscan  packets  are.   This  slows  things  down,  but can be
              slightly less conspicuous.

       -n     Tells Nmap to NEVER do reverse DNS resolution on the  active  IP
              addresses  it  finds.   Since  DNS  is often slow, this can help
              speed things up.

       -R     Tells Nmap to ALWAYS do reverse DNS resolution on the target  IP
              addresses.   Normally  this is only done when a machine is found
              to be alive.

       -r     Tells Nmap NOT  to  randomize  the  order  in  which  ports  are
              scanned.

       -ttl <value>
              Sets  the  IPv4  time to live field in sent packets to the given
              value.

       --randomize_hosts
              Tells Nmap to shuffle each group of up to 2048 hosts  before  it
              scans  them.   This  can  make the scans less obvious to various
              network monitoring systems, especially when you combine it  with
              slow timing options (see below).

       -M <max sockets>
              Sets the maximum number of sockets that will be used in parallel
              for a TCP connect() scan (the default).  This is useful to  slow
              down  the  scan a little bit and avoid crashing remote machines.
              Another approach is to use -sS, which is  generally  easier  for
              machines to handle.

       --packet_trace
              Tells  Nmap  to  show all the packets it sends and receives in a
              tcpdump-like format.  This can be tremendously useful for debug-
              ging, and is also a good learning tool.

       --datadir [directoryname]
              Nmap  obtains  some special data at runtime in files named nmap-
              services, nmap-protocols,  nmap-rpc,  and  nmap-os-fingerprints.
              Nmap  first  searches  these  files  in  the directory option to
              --nmapdir.  Any files not found there, are searched for  in  the
              directory specified by the NMAPDIR environmental variable.  Next
              comes  ~/nmap,  and  then  a  compiled-in   location   such   as
              /usr/share/nmap  .  As a last resort, Nmap will look in the cur-
              rent directory.

       TIMING OPTIONS
              Generally Nmap does a good job at adjusting for Network  charac-
              teristics at runtime and scanning as fast as possible while min-
              imizing that chances of hosts/ports going undetected.   However,
              there  are same cases where Nmap’s default timing policy may not
              meet your objectives.  The  following  options  provide  a  fine
              level of control over the scan timing:

       -T <Paranoid|Sneaky|Polite|Normal|Aggressive|Insane>
              These  are  canned  timing  policies for conveniently expressing
              your priorities to Nmap.  Paranoid mode scans very slowly in the
              hopes  of  avoiding detection by IDS systems.  It serializes all
              scans (no parallel scanning) and generally waits at least 5 min-
              utes between sending packets.  Sneaky is similar, except it only
              waits 15 seconds between sending packets.  Polite  is  meant  to
              ease  load  on  the  network  and reduce the chances of crashing
              machines.  It serializes the probes and waits at least 0.4  sec-
              onds  between  them.   Note  that  this is generally at least an
              order of magnitude slower than default scans,  so  only  use  it
              when  you  need  to.  Normal is the default Nmap behavior, which
              tries to run as quickly as possible without overloading the net-
              work  or  missing  hosts/ports.  Aggressive This option can make
              certain scans (especially SYN  scans  against  heavily  filtered
              hosts)  much faster.  It is recommended for impatient folks with
              a fast net connection.  Insane is only suitable  for  very  fast
              networks  or  where  you don’t mind losing some information.  It
              times out hosts in 15 minutes and won’t wait more than 0.3  sec-
              onds  for  individual probes.  It does allow for very quick net-
              work sweeps though :).

              You can also reference these  by  number  (0-5).   For  example,
              "-T0" gives you Paranoid mode and "-T5" is Insane mode.

       --host_timeout <milliseconds>
              Specifies the amount of time Nmap is allowed to spend scanning a
              single host before giving up on that  IP.   The  default  timing
              mode has no host timeout.

       --max_rtt_timeout <milliseconds>
              Specifies the maximum amount of time Nmap is allowed to wait for
              a probe response before retransmitting or timing out  that  par-
              ticular probe.  The default mode sets this to about 9000.

       --min_rtt_timeout <milliseconds>
              When the target hosts start to establish a pattern of responding
              very quickly, Nmap will shrink the  amount  of  time  given  per
              probe.   This speeds up the scan, but can lead to missed packets
              when a response takes longer than usual.   With  this  parameter
              you  can guarantee that Nmap will wait at least the given amount
              of time before giving up on a probe.

       --initial_rtt_timeout <milliseconds>
              Specifies the initial probe timeout.   This  is  generally  only
              useful  when  scanning firewalled hosts with -P0.  Normally Nmap
              can obtain good RTT estimates from the ping and  the  first  few
              probes.  The default mode uses 6000.

       --max_parallelism <number>
              Specifies the maximum number of scans Nmap is allowed to perform
              in parallel.  Setting this to one means Nmap will never  try  to
              scan more than 1 port at a time.  It also effects other parallel
              scans such as ping sweep, RPC scan, etc.

       --min_parallelism <number>
              Tells Nmap to scan at least the given number of ports in  paral-
              lel.   This  can speed up scans against certain firewalled hosts
              by an order of magnitude.  But be careful -- results will become
              unreliable if you push it too far.

       --scan_delay <milliseconds>
              Specifies  the  minimum  amount  of  time Nmap must wait between
              probes.  This is mostly useful to reduce network load or to slow
              the scan way down to sneak under IDS thresholds.



       TARGET SPECIFICATION
              Everything  that isn’t an option (or option argument) in nmap is
              treated as a target host specification.  The  simplest  case  is
              listing  single  hostnames  or IP addresses on the command line.
              If you want to scan a subnet of IP  addresses,  you  can  append
              /mask  to  the  hostname  or IP address.  mask must be between 0
              (scan the whole Internet) and 32 (scan the  single  host  speci-
              fied).   Use /24 to scan a class "C" address and /16 for a class
              "B".

              Nmap also has a more powerful notation which lets you specify an
              IP  address  using  lists/ranges for each element.  Thus you can
              scan the whole  class  "B"  network  192.168.*.*  by  specifying
              "192.168.*.*"      or      "192.168.0-255.0-255"     or     even
              "192.168.1-50,51-255.1,2,3,4,5-255".  And of course you can  use
              the  mask notation: "192.168.0.0/16".  These are all equivalent.
              If you use asterisks ("*"), remember that  most  shells  require
              you  to  escape  them  with  back  slashes  or protect them with
              quotes.

              Another interesting thing to do is slice the Internet the  other
              way.   Instead  of  scanning  all the hosts in a class "B", scan
              "*.*.5.6-7" to scan every IP address that ends in .5.6  or  .5.7
              Pick your own numbers.  For more information on specifying hosts
              to scan, see the examples section.


EXAMPLES

       Here are some examples of using nmap, from simple and normal to a  lit-
       tle  more  complex/esoteric.   Note that actual numbers and some actual
       domain names are used to make things more concrete.  In their place you
       should  substitute  addresses/names  from  your  own network.  I do not
       think portscanning other networks is illegal; nor should  portscans  be
       construed by others as an attack.  I have scanned hundreds of thousands
       of machines and have received only one  complaint.   But  I  am  not  a
       lawyer  and some (anal) people may be annoyed by nmap probes.  Get per-
       mission first or use at your own risk.

       nmap -v target.example.com

       This option scans all reserved TCP ports on  the  machine  target.exam-
       ple.com .  The -v means turn on verbose mode.

       nmap -sS -O target.example.com/24

       Launches  a stealth SYN scan against each machine that is up out of the
       255 machines on class "C" where target.example.com  resides.   It  also
       tries  to  determine what operating system is running on each host that
       is up and running.  This requires root privileges because  of  the  SYN
       scan and the OS detection.

       nmap -sX -p 22,53,110,143,4564 198.116.*.1-127

       Sends an Xmas tree scan to the first half of each of the 255 possible 8
       bit subnets in the 198.116 class "B" address  space.   We  are  testing
       whether  the  systems  run sshd, DNS, pop3d, imapd, or port 4564.  Note
       that Xmas scan doesn’t work on Microsoft boxes due to  their  deficient
       TCP stack.  Same goes with CISCO, IRIX, HP/UX, and BSDI boxes.

       nmap -v --randomize_hosts -p 80 *.*.2.3-5

       Rather  than  focus on a specific IP range, it is sometimes interesting
       to slice up the entire Internet and  scan  a  small  sample  from  each
       slice.   This  command  finds  all  web  servers  on  machines  with IP
       addresses ending in .2.3, .2.4, or .2.5.  If you are root you might  as
       well add -sS.  Also you will find more interesting machines starting at
       127. so you might want to use "127-222" instead of the first  asterisks
       because  that  section  has  a  greater density of interesting machines
       (IMHO).

       host -l company.com | cut  -d  -f 4 | ./nmap -v -iL -

       Do a DNS zone transfer to find the hosts in company.com and  then  feed
       the IP addresses to nmap.  The above commands are for my GNU/Linux box.
       You may need different commands/options on other operating systems.


BUGS

       Bugs?  What bugs?  Send me any that you find.  Patches are nice too  :)
       Remember  to  also  send  in  new  OS  fingerprints  so we can grow the
       database.  Nmap will give you a submission URL when an appropriate fin-
       gerprint is found.


AUTHOR

       Fyodor <fyodor@insecure.org>


DISTRIBUTION

       The  newest  version  of  nmap  can  be  obtained from http://www.inse-
       cure.org/nmap/

       nmap is (C) 1995-2003 by Insecure.Com LLC

       The Nmap Security Scanner is (C) 1995-2003 Insecure.Com LLC. This  pro-
       gram  is free software; you may redistribute and/or modify it under the
       terms of the GNU General Public License as published by the Free  Soft-
       ware Foundation; Version 2.  This guarantees your right to use, modify,
       and redistribute this software under certain conditions.  If  you  wish
       to  embed  Nmap technology into proprietary software, we may be willing
       to sell alternative licenses (contact sales@insecure.com).  Many  secu-
       rity scanner vendors already license Nmap technology such as our remote
       OS fingerprinting database and code.

       Note that we consider aggregation/inclusion/integration of Nmap into an
       executable  installer  to constitute a derived work and thus subject to
       the GPL restrictions.  We also consider certain programs  that  tightly
       integrate  with  Nmap to constitute derivative works, even if they only
       interface with Nmap by executing the Nmap binary and  interpreting  its
       output rather than by direct linking.  If you are interested in includ-
       ing Nmap with your proprietary software or appliance, please contact us
       first to ensure proper licensing.

       Source  is  provided  to  this software because we believe users have a
       right to know exactly what a program is going to do before they run it.
       This  also  allows  you  to audit the software for security holes (none
       have been found so far).

       Source code also allows you to port Nmap to new  platforms,  fix  bugs,
       and  add  new features.  You are highly encouraged to send your changes
       to fyodor@insecure.org for possible incorporation into the main distri-
       bution.   By  sending  these  changes to Fyodor or one the Insecure.Org
       development mailing lists, it is assumed that you are  offering  Fyodor
       and  Insecure.Com LLC the unlimited, non-exclusive right to reuse, mod-
       ify, and relicense the  code.   Nmap  will  always  be  available  Open
       Source,  but  this is important because the inability to relicense code
       has caused devastating problems for other Free Software projects  (such
       as  KDE  and  NASM).   We also occasionally relicense the code to third
       parties as discussed above.  If you wish  to  specify  special  license
       conditions of your contributions, just say so when you send them.

       This  program  is  distributed  in the hope that it will be useful, but
       WITHOUT ANY  WARRANTY;  without  even  the  implied  warranty  of  MER-
       CHANTABILITY  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
       Public License for more details (it is in the COPYING file of the  nmap
       distribution).

       It  should  also  be  noted  that  Nmap has been known to crash certain
       poorly written applications, TCP/IP stacks, and even operating systems.
       Nmap  should  never  be run against mission critical systems unless you
       are prepared to suffer downtime.  We acknowledge  here  that  Nmap  may
       crash  your  systems  or networks and we disclaim all liability for any
       damage or problems Nmap could cause.

       Because of the slight risk of crashes and because a few black hats like
       to  use  Nmap  for reconnaissance prior to attacking systems, there are
       administrators who become upset and may complain when their  system  is
       scanned.   Thus,  it  is  often  advisable to request permission before
       doing even a light scan of a network.

       Nmap should never be run with privileges (eg suid  root)  for  security
       reasons.


       This product includes software developed by the Apache Software Founda-
       tion (http://www.apache.org/).  The  Libpcap  portable  packet  capture
       library  is  distributed along with nmap.  Libpcap was originally copy-
       righted by Van Jacobson, Craig Leres and Steven  McCanne,  all  of  the
       Lawrence Berkeley National Laboratory, University of California, Berke-
       ley, CA.  It is now maintained by http://www.tcpdump.org .

       Regular expression support is provided by  the  PCRE  library  package,
       which  is  open source software, written by Philip Hazel, and copyright
       by the University of Cambridge, England.  See http://www.pcre.org/ .

       US Export Control: Insecure.Com LLC believes that Nmap falls  under  US
       ECCN  (export  control  classification number) 5D992.  This category is
       called ’"Information Security" "software"  not  controlled  by  5D002’.
       The  only  restriction  of  this classification is AT (anti-terrorism),
       which applies to almost all goods and denies export  to  a  handful  of
       rogue  nations  such as Iran and North Korea.  Thus exporting Nmap does
       not require any special license, permit, or other  governmental  autho-
       rization.



                                                                       NMAP(1)

Man(1) output converted with man2html